
Ultimate access to all questions.
A discrete random variable Y has probability function given by:
| Y | 0 | 1 | 2 |
|---|---|---|---|
| P(Y = y) | 0.3 | 0.6 | 0.1 |
Calculate Var(Y).
A
0.2
B
0.36
C
0.8
D
1
Explanation:
To calculate the variance of a discrete random variable, we use the formula:
[\text{Var}(Y) = E[Y^2] - (E[Y])^2]
[E[Y] = \sum y \cdot P(Y = y) = (0 \times 0.3) + (1 \times 0.6) + (2 \times 0.1) = 0 + 0.6 + 0.2 = 0.8]
[E[Y^2] = \sum y^2 \cdot P(Y = y) = (0^2 \times 0.3) + (1^2 \times 0.6) + (2^2 \times 0.1) = (0 \times 0.3) + (1 \times 0.6) + (4 \times 0.1) = 0 + 0.6 + 0.4 = 1.0]
[\text{Var}(Y) = E[Y^2] - (E[Y])^2 = 1.0 - (0.8)^2 = 1.0 - 0.64 = 0.36]
Therefore, the variance of Y is 0.36, which corresponds to option B.