
Ultimate access to all questions.
Given a Poisson random variable with P(X=1) = 0.09 and P(X=2) = 0.0045, calculate Var(X).
A
0.009
B
0.3162
C
0.05
D
0.1
Explanation:
For a Poisson random variable, the probability mass function is:
[P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}]
Given:
From equation (ii): [\frac{e^{-\lambda} \lambda^2}{2} = 0.0045] [e^{-\lambda} \lambda^2 = 0.009] ...(ii)
Now, divide equation (ii) by equation (i): [\frac{e^{-\lambda} \lambda^2}{e^{-\lambda} \lambda} = \frac{0.009}{0.09}] [\lambda = 0.1]
For a Poisson distribution, the variance equals the mean: [\text{Var}(X) = \lambda = 0.1]
Therefore, the correct answer is D. 0.1