Step-by-Step Solution
1. Conditional Probability Formula
The conditional distribution is given by:
f(X1∣X2)(x1∣X2=x2)=f(X2)(x2)f(X1,X2)(x1,x2)
So,
f(x1∣X2=0.5)=f(x2)(x2=0.5)f(x1,x2)(x1,x2=0.5)
2. Calculate Marginal Distribution of X₂
The marginal distribution of X2 is:
f(x2)(x2)=∫−∞∞f(x1,x2)(x1,x2)dx1=∫014x1x2dx1=[2x12x2]01=2x2−0=2x2
So, f(x2)(x2=0.5)=2×0.5=1
3. Calculate Conditional Density
f(x1∣X2=0.5)=f(x2)(x2=0.5)f(x1,x2)(x1,x2=0.5)=14x1×0.5=2x1
Therefore, the conditional density is f(x1∣X2=0.5)=2x1 for 0<x1<1.
4. Compute Conditional Expectation
E(X1∣X2=0.5)=∫01x1⋅f(x1∣X2=0.5)dx1=∫01x1⋅2x1dx1=2∫01x12dx1=2[3x13]01=2⋅31=32≈0.67
✅ Final Answer: D. 0.67_