Explanation
The covariance between two random variables X 1 X_1 X 1 β and X 2 X_2 X 2 β is given by:
Cov ( X 1 , X 2 ) = E ( X 1 X 2 ) β E ( X 1 ) β
E ( X 2 ) \text{Cov}(X_1, X_2) = E(X_1 X_2) - E(X_1) \cdot E(X_2) Cov ( X 1 β , X 2 β ) = E ( X 1 β X 2 β ) β E ( X 1 β ) β
E ( X 2 β )
To compute this, we need to find:
E ( X 1 X 2 ) E(X_1 X_2) E ( X 1 β X 2 β ) - the expected value of the product
E ( X 1 ) E(X_1) E ( X 1 β ) - the expected value of X 1 X_1 X 1 β
E ( X 2 ) E(X_2) E ( X 2 β ) - the expected value of X 2 X_2 X 2 β
Step 1: Verify if the function is a valid joint PDF
First, let's check if the given function integrates to 1 over the domain:
β« 0 1 β« 0 4 2 1 8 x 1 x 2 β d x 2 β d x 1 \int_{0}^{1} \int_{0}^{4\sqrt{2}} \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1 β« 0 1 β β« 0 4 2 β β 8 1 β x 1 β x 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 x 1 [ x 2 2 2 ] 0 4 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1 \left[ \frac{x_2^2}{2} \right]_{0}^{4\sqrt{2}} dx_1 = 8 1 β β« 0 1 β x 1 β [ 2 x 2 2 β β ] 0 4 2 β β d x 1 β
= 1 8 β« 0 1 x 1 β
( 4 2 ) 2 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{(4\sqrt{2})^2}{2} dx_1 = 8 1 β β« 0 1 β x 1 β β
2 ( 4 2 β ) 2 β d x 1 β
= 1 8 β« 0 1 x 1 β
32 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{32}{2} dx_1 = 8 1 β β« 0 1 β x 1 β β
2 32 β d x 1 β
= 1 8 β« 0 1 16 x 1 d x 1 = \frac{1}{8} \int_{0}^{1} 16x_1 dx_1 = 8 1 β β« 0 1 β 16 x 1 β d x 1 β
= 2 β« 0 1 x 1 d x 1 = 2 β
1 2 = 1 = 2 \int_{0}^{1} x_1 dx_1 = 2 \cdot \frac{1}{2} = 1 = 2 β« 0 1 β x 1 β d x 1 β = 2 β
2 1 β = 1
The function is indeed a valid joint PDF.
Step 2: Compute E ( X 1 X 2 ) E(X_1 X_2) E ( X 1 β X 2 β )
E ( X 1 X 2 ) = β« 0 1 β« 0 4 2 x 1 x 2 β
1 8 x 1 x 2 β d x 2 β d x 1 E(X_1 X_2) = \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1 x_2 \cdot \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1 E ( X 1 β X 2 β ) = β« 0 1 β β« 0 4 2 β β x 1 β x 2 β β
8 1 β x 1 β x 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 β« 0 4 2 x 1 2 x 2 2 β d x 2 β d x 1 = \frac{1}{8} \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1^2 x_2^2 \, dx_2 \, dx_1 = 8 1 β β« 0 1 β β« 0 4 2 β β x 1 2 β x 2 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 x 1 2 [ x 2 3 3 ] 0 4 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1^2 \left[ \frac{x_2^3}{3} \right]_{0}^{4\sqrt{2}} dx_1 = 8 1 β β« 0 1 β x 1 2 β [ 3 x 2 3 β β ] 0 4 2 β β d x 1 β
= 1 8 β« 0 1 x 1 2 β
( 4 2 ) 3 3 d x 1 = \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{(4\sqrt{2})^3}{3} dx_1 = 8 1 β β« 0 1 β x 1 2 β β
3 ( 4 2 β ) 3 β d x 1 β
= 1 8 β« 0 1 x 1 2 β
128 2 3 d x 1 = \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{128\sqrt{2}}{3} dx_1 = 8 1 β β« 0 1 β x 1 2 β β
3 128 2 β β d x 1 β
= 16 2 3 β« 0 1 x 1 2 d x 1 = \frac{16\sqrt{2}}{3} \int_{0}^{1} x_1^2 dx_1 = 3 16 2 β β β« 0 1 β x 1 2 β d x 1 β
= 16 2 3 β
1 3 = 16 2 9 = \frac{16\sqrt{2}}{3} \cdot \frac{1}{3} = \frac{16\sqrt{2}}{9} = 3 16 2 β β β
3 1 β = 9 16 2 β β
Step 3: Compute E ( X 1 ) E(X_1) E ( X 1 β )
E ( X 1 ) = β« 0 1 β« 0 4 2 x 1 β
1 8 x 1 x 2 β d x 2 β d x 1 E(X_1) = \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1 \cdot \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1 E ( X 1 β ) = β« 0 1 β β« 0 4 2 β β x 1 β β
8 1 β x 1 β x 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 β« 0 4 2 x 1 2 x 2 β d x 2 β d x 1 = \frac{1}{8} \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1^2 x_2 \, dx_2 \, dx_1 = 8 1 β β« 0 1 β β« 0 4 2 β β x 1 2 β x 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 x 1 2 [ x 2 2 2 ] 0 4 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1^2 \left[ \frac{x_2^2}{2} \right]_{0}^{4\sqrt{2}} dx_1 = 8 1 β β« 0 1 β x 1 2 β [ 2 x 2 2 β β ] 0 4 2 β β d x 1 β
= 1 8 β« 0 1 x 1 2 β
( 4 2 ) 2 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{(4\sqrt{2})^2}{2} dx_1 = 8 1 β β« 0 1 β x 1 2 β β
2 ( 4 2 β ) 2 β d x 1 β
= 1 8 β« 0 1 x 1 2 β
32 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{32}{2} dx_1 = 8 1 β β« 0 1 β x 1 2 β β
2 32 β d x 1 β
= 1 8 β« 0 1 16 x 1 2 d x 1 = \frac{1}{8} \int_{0}^{1} 16x_1^2 dx_1 = 8 1 β β« 0 1 β 16 x 1 2 β d x 1 β
= 2 β« 0 1 x 1 2 d x 1 = 2 β
1 3 = 2 3 = 2 \int_{0}^{1} x_1^2 dx_1 = 2 \cdot \frac{1}{3} = \frac{2}{3} = 2 β« 0 1 β x 1 2 β d x 1 β = 2 β
3 1 β = 3 2 β
Step 4: Compute E ( X 2 ) E(X_2) E ( X 2 β )
E ( X 2 ) = β« 0 1 β« 0 4 2 x 2 β
1 8 x 1 x 2 β d x 2 β d x 1 E(X_2) = \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_2 \cdot \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1 E ( X 2 β ) = β« 0 1 β β« 0 4 2 β β x 2 β β
8 1 β x 1 β x 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 β« 0 4 2 x 1 x 2 2 β d x 2 β d x 1 = \frac{1}{8} \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1 x_2^2 \, dx_2 \, dx_1 = 8 1 β β« 0 1 β β« 0 4 2 β β x 1 β x 2 2 β d x 2 β d x 1 β
= 1 8 β« 0 1 x 1 [ x 2 3 3 ] 0 4 2 d x 1 = \frac{1}{8} \int_{0}^{1} x_1 \left[ \frac{x_2^3}{3} \right]_{0}^{4\sqrt{2}} dx_1 = 8 1 β β« 0 1 β x 1 β [ 3 x 2 3 β β ] 0 4 2 β β d x 1 β
= 1 8 β« 0 1 x 1 β
( 4 2 ) 3 3 d x 1 = \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{(4\sqrt{2})^3}{3} dx_1 = 8 1 β β« 0 1 β x 1 β β
3 ( 4 2 β ) 3 β d x 1 β
= 1 8 β« 0 1 x 1 β
128 2 3 d x 1 = \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{128\sqrt{2}}{3} dx_1 = 8 1 β β« 0 1 β x 1 β β
3 128 2 β β d x 1 β
= 16 2 3 β« 0 1 x 1 d x 1 = \frac{16\sqrt{2}}{3} \int_{0}^{1} x_1 dx_1 = 3 16 2 β β β« 0 1 β x 1 β d x 1 β
= 16 2 3 β
1 2 = 8 2 3 = \frac{16\sqrt{2}}{3} \cdot \frac{1}{2} = \frac{8\sqrt{2}}{3} = 3 16 2 β β β
2 1 β = 3 8 2 β β
Step 5: Compute Covariance
Cov ( X 1 , X 2 ) = E ( X 1 X 2 ) β E ( X 1 ) β
E ( X 2 ) \text{Cov}(X_1, X_2) = E(X_1 X_2) - E(X_1) \cdot E(X_2) Cov ( X 1 β , X 2 β ) = E ( X 1 β X 2 β ) β E ( X 1 β ) β
E ( X 2 β )
= 16 2 9 β 2 3 β
8 2 3 = \frac{16\sqrt{2}}{9} - \frac{2}{3} \cdot \frac{8\sqrt{2}}{3} = 9 16 2 β β β 3 2 β β
3 8 2 β β
= 16 2 9 β 16 2 9 = 0 = \frac{16\sqrt{2}}{9} - \frac{16\sqrt{2}}{9} = 0 = 9 16 2 β β β 9 16 2 β β = 0
Therefore, the covariance between the interest rate and the stock market return is 0 .
Key Insight : The covariance is zero because the joint PDF can be factored as f ( x 1 , x 2 ) = 1 8 x 1 x 2 = ( 1 2 x 1 ) β
( 1 4 x 2 ) f(x_1, x_2) = \frac{1}{8}x_1x_2 = \left(\frac{1}{2}x_1\right) \cdot \left(\frac{1}{4}x_2\right) f ( x 1 β , x 2 β ) = 8 1 β x 1 β x 2 β = ( 2 1 β x 1 β ) β
( 4 1 β x 2 β ) over the rectangular domain, indicating that X 1 X_1 X 1 β and X 2 X_2 X 2 β are independent. When two random variables are independent, their covariance is always zero.