Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


A financial risk manager believes that the prevailing interest rate (X1X_1) and the return in a stock market (X2X_2) can be modeled using the following joint probability function:

f(x1,x2)={18x1x2,0≀x1≀1,β€…β€Š0≀x2≀420,elsewheref(x_1, x_2) = \begin{cases} \frac{1}{8} x_1 x_2, & 0 \leq x_1 \leq 1, \; 0 \leq x_2 \leq 4\sqrt{2} \\ 0, & \text{elsewhere} \end{cases}

What is the covariance between the interest rate and the return in the stock market?

TTanishq



Explanation:

Explanation

The covariance between two random variables X1X_1 and X2X_2 is given by:

Cov(X1,X2)=E(X1X2)βˆ’E(X1)β‹…E(X2)\text{Cov}(X_1, X_2) = E(X_1 X_2) - E(X_1) \cdot E(X_2)

To compute this, we need to find:

  1. E(X1X2)E(X_1 X_2) - the expected value of the product
  2. E(X1)E(X_1) - the expected value of X1X_1
  3. E(X2)E(X_2) - the expected value of X2X_2

Step 1: Verify if the function is a valid joint PDF

First, let's check if the given function integrates to 1 over the domain:

∫01∫04218x1x2 dx2 dx1\int_{0}^{1} \int_{0}^{4\sqrt{2}} \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1

=18∫01x1[x222]042dx1= \frac{1}{8} \int_{0}^{1} x_1 \left[ \frac{x_2^2}{2} \right]_{0}^{4\sqrt{2}} dx_1

=18∫01x1β‹…(42)22dx1= \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{(4\sqrt{2})^2}{2} dx_1

=18∫01x1β‹…322dx1= \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{32}{2} dx_1

=18∫0116x1dx1= \frac{1}{8} \int_{0}^{1} 16x_1 dx_1

=2∫01x1dx1=2β‹…12=1= 2 \int_{0}^{1} x_1 dx_1 = 2 \cdot \frac{1}{2} = 1

The function is indeed a valid joint PDF.

Step 2: Compute E(X1X2)E(X_1 X_2)

E(X1X2)=∫01∫042x1x2β‹…18x1x2 dx2 dx1E(X_1 X_2) = \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1 x_2 \cdot \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1

=18∫01∫042x12x22 dx2 dx1= \frac{1}{8} \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1^2 x_2^2 \, dx_2 \, dx_1

=18∫01x12[x233]042dx1= \frac{1}{8} \int_{0}^{1} x_1^2 \left[ \frac{x_2^3}{3} \right]_{0}^{4\sqrt{2}} dx_1

=18∫01x12β‹…(42)33dx1= \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{(4\sqrt{2})^3}{3} dx_1

=18∫01x12β‹…12823dx1= \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{128\sqrt{2}}{3} dx_1

=1623∫01x12dx1= \frac{16\sqrt{2}}{3} \int_{0}^{1} x_1^2 dx_1

=1623β‹…13=1629= \frac{16\sqrt{2}}{3} \cdot \frac{1}{3} = \frac{16\sqrt{2}}{9}

Step 3: Compute E(X1)E(X_1)

E(X1)=∫01∫042x1β‹…18x1x2 dx2 dx1E(X_1) = \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1 \cdot \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1

=18∫01∫042x12x2 dx2 dx1= \frac{1}{8} \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1^2 x_2 \, dx_2 \, dx_1

=18∫01x12[x222]042dx1= \frac{1}{8} \int_{0}^{1} x_1^2 \left[ \frac{x_2^2}{2} \right]_{0}^{4\sqrt{2}} dx_1

=18∫01x12β‹…(42)22dx1= \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{(4\sqrt{2})^2}{2} dx_1

=18∫01x12β‹…322dx1= \frac{1}{8} \int_{0}^{1} x_1^2 \cdot \frac{32}{2} dx_1

=18∫0116x12dx1= \frac{1}{8} \int_{0}^{1} 16x_1^2 dx_1

=2∫01x12dx1=2β‹…13=23= 2 \int_{0}^{1} x_1^2 dx_1 = 2 \cdot \frac{1}{3} = \frac{2}{3}

Step 4: Compute E(X2)E(X_2)

E(X2)=∫01∫042x2β‹…18x1x2 dx2 dx1E(X_2) = \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_2 \cdot \frac{1}{8} x_1 x_2 \, dx_2 \, dx_1

=18∫01∫042x1x22 dx2 dx1= \frac{1}{8} \int_{0}^{1} \int_{0}^{4\sqrt{2}} x_1 x_2^2 \, dx_2 \, dx_1

=18∫01x1[x233]042dx1= \frac{1}{8} \int_{0}^{1} x_1 \left[ \frac{x_2^3}{3} \right]_{0}^{4\sqrt{2}} dx_1

=18∫01x1β‹…(42)33dx1= \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{(4\sqrt{2})^3}{3} dx_1

=18∫01x1β‹…12823dx1= \frac{1}{8} \int_{0}^{1} x_1 \cdot \frac{128\sqrt{2}}{3} dx_1

=1623∫01x1dx1= \frac{16\sqrt{2}}{3} \int_{0}^{1} x_1 dx_1

=1623β‹…12=823= \frac{16\sqrt{2}}{3} \cdot \frac{1}{2} = \frac{8\sqrt{2}}{3}

Step 5: Compute Covariance

Cov(X1,X2)=E(X1X2)βˆ’E(X1)β‹…E(X2)\text{Cov}(X_1, X_2) = E(X_1 X_2) - E(X_1) \cdot E(X_2)

=1629βˆ’23β‹…823= \frac{16\sqrt{2}}{9} - \frac{2}{3} \cdot \frac{8\sqrt{2}}{3}

=1629βˆ’1629=0= \frac{16\sqrt{2}}{9} - \frac{16\sqrt{2}}{9} = 0

Therefore, the covariance between the interest rate and the stock market return is 0.

Key Insight: The covariance is zero because the joint PDF can be factored as f(x1,x2)=18x1x2=(12x1)β‹…(14x2)f(x_1, x_2) = \frac{1}{8}x_1x_2 = \left(\frac{1}{2}x_1\right) \cdot \left(\frac{1}{4}x_2\right) over the rectangular domain, indicating that X1X_1 and X2X_2 are independent. When two random variables are independent, their covariance is always zero.

Comments

Loading comments...