Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


Assume we have equally invested in two different companies; ABC and XYZ. We anticipate that there is a 15% chance that next year's stock returns for ABC Corp will be 6%, a 60% probability that they will be 8% and a 25% probability that they will be 10%. In addition, we already know the expected value of returns is 8.2%, and the standard deviation is 1.249%. We also anticipate that the same probabilities and states are associated with a 4% return for XYZ Corp, a 5% return, and a 5.5% return. The expected value of returns is then 4.975%, and the standard deviation is 0.46%. Calculate the portfolio standard deviation:

TTanishq



Explanation:

Explanation

To calculate the portfolio standard deviation, we need to compute the portfolio variance first and then take its square root.

Step 1: Calculate Covariance

The covariance between ABC and XYZ is calculated using:

cov(RA,RB)=βˆ‘P(Ri)[Riβˆ’E(Ri)][Rjβˆ’E(Rj)]\text{cov}(R_A, R_B) = \sum P(R_i) [R_i - E(R_i)][R_j - E(R_j)]

Given:

  • ABC: Expected return = 8.2% (0.082), Standard deviation = 1.249% (0.01249)
  • XYZ: Expected return = 4.975% (0.04975), Standard deviation = 0.46% (0.0046)
  • Probabilities: 15% (0.15), 60% (0.6), 25% (0.25)

cov(ABC,Β XYZ)=0.15(0.06βˆ’0.082)(0.04βˆ’0.04975)+0.6(0.08βˆ’0.082)(0.05βˆ’0.04975)+0.25(0.10βˆ’0.082)(0.055βˆ’0.04975)\text{cov(ABC, XYZ)} = 0.15(0.06 - 0.082)(0.04 - 0.04975) + 0.6(0.08 - 0.082)(0.05 - 0.04975) + 0.25(0.10 - 0.082)(0.055 - 0.04975)

=0.15(βˆ’0.022)(βˆ’0.00975)+0.6(βˆ’0.002)(0.00025)+0.25(0.018)(0.00525)= 0.15(-0.022)(-0.00975) + 0.6(-0.002)(0.00025) + 0.25(0.018)(0.00525)

=0.15(0.0002145)+0.6(βˆ’0.0000005)+0.25(0.0000945)= 0.15(0.0002145) + 0.6(-0.0000005) + 0.25(0.0000945)

=0.000032175+(βˆ’0.0000003)+0.000023625= 0.000032175 + (-0.0000003) + 0.000023625

=0.0000555= 0.0000555

Step 2: Calculate Portfolio Variance

Since the investment is equally weighted (50% in each):

WA=WB=0.5W_A = W_B = 0.5

ΟƒA=0.01249,ΟƒB=0.0046\sigma_A = 0.01249, \quad \sigma_B = 0.0046

Portfolio variance formula:

Οƒp2=WA2Γ—ΟƒA2+WB2Γ—ΟƒB2+2Γ—WAΓ—WBΓ—cov(RA,RB)\sigma_p^2 = W_A^2 \times \sigma_A^2 + W_B^2 \times \sigma_B^2 + 2 \times W_A \times W_B \times \text{cov}(R_A, R_B)

Οƒp2=0.52Γ—(0.01249)2+0.52Γ—(0.0046)2+2Γ—0.5Γ—0.5Γ—0.0000555\sigma_p^2 = 0.5^2 \times (0.01249)^2 + 0.5^2 \times (0.0046)^2 + 2 \times 0.5 \times 0.5 \times 0.0000555

=0.25Γ—0.000156+0.25Γ—0.00002116+0.5Γ—0.0000555= 0.25 \times 0.000156 + 0.25 \times 0.00002116 + 0.5 \times 0.0000555

=0.000039+0.00000529+0.00002775= 0.000039 + 0.00000529 + 0.00002775

=0.00007204= 0.00007204

Step 3: Calculate Portfolio Standard Deviation

Οƒp=0.00007204=0.00849\sigma_p = \sqrt{0.00007204} = 0.00849

Therefore, the portfolio standard deviation is 0.00849 or 0.849%.

Comments

Loading comments...