Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


The average return on the Dow Jones Industrial Average for 121 quarterly observations is 1.5%. If the standard deviation of the returns can be assumed to be 8%, what is the 99% confidence interval for the quarterly returns of the Dow Jones?

TTanishq



Explanation:

Explanation

To calculate the 99% confidence interval for the quarterly returns, we use the formula:

Standard error of the sample mean = Standard deviationSample size\frac{\text{Standard deviation}}{\sqrt{\text{Sample size}}}

Given:

  • Sample size (n) = 121
  • Standard deviation (σ) = 8% = 0.08
  • Sample mean (xÌ„) = 1.5% = 0.015
  • 99% confidence level

Step 1: Calculate standard error SE=0.08121=0.0811=0.00727SE = \frac{0.08}{\sqrt{121}} = \frac{0.08}{11} = 0.00727

Step 2: Find critical z-value For 99% confidence interval, the critical z-value is 2.575

Step 3: Calculate margin of error Margin of error=z×SE=2.575×0.00727=0.0187Margin\ of\ error = z \times SE = 2.575 \times 0.00727 = 0.0187

Step 4: Calculate confidence interval CI=xˉ±margin of error=0.015±0.0187CI = x̄ \pm margin\ of\ error = 0.015 \pm 0.0187 Lower bound=0.015−0.0187=−0.0037=−0.37%Lower\ bound = 0.015 - 0.0187 = -0.0037 = -0.37\% Upper bound=0.015+0.0187=0.0337=3.37%Upper\ bound = 0.015 + 0.0187 = 0.0337 = 3.37\%

Therefore, the 99% confidence interval is approximately [-0.37%; 3.37%], which matches option A [-0.4%; 3.4%].

Comments

Loading comments...