Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


A regression analysis of monthly returns of a sales company on the market return over ten years gives an intercept of β^0=0.65\hat{\beta}_0 = 0.65, the slope β^=1.65\hat{\beta} = 1.65. Other quantities include: s2=20.45s^2 = 20.45, σ^X2=18.65\hat{\sigma}^2_X = 18.65 and μ^X=0.61\hat{\mu}_X = 0.61. What is the standard error estimate of β^0\hat{\beta}_0?

TTanishq



Explanation:

Explanation

The standard error of the intercept (β^0\hat{\beta}_0) in a linear regression can be calculated using the formula:

SEEβ0=s2(μ^X2+σ^X2)nσ^X2\text{SEE}_{\beta_0} = \sqrt{\frac{s^2(\hat{\mu}_X^2 + \hat{\sigma}_X^2)}{n\hat{\sigma}_X^2}}

Where:

  • s2=20.45s^2 = 20.45 (residual variance)
  • μ^X=0.61\hat{\mu}_X = 0.61 (mean of the independent variable)
  • σ^X2=18.65\hat{\sigma}_X^2 = 18.65 (variance of the independent variable)
  • n=120n = 120 (number of monthly observations over 10 years: 12 months × 10 years)

Substituting the values:

SEEβ0=20.45(0.612+18.65)120×18.65\text{SEE}_{\beta_0} = \sqrt{\frac{20.45(0.61^2 + 18.65)}{120 \times 18.65}}

First, calculate the numerator:

  • 0.612=0.37210.61^2 = 0.3721
  • 0.3721+18.65=19.02210.3721 + 18.65 = 19.0221
  • 20.45×19.0221=388.90204520.45 \times 19.0221 = 388.902045

Then calculate the denominator:

  • 120×18.65=2238120 \times 18.65 = 2238

Now compute the fraction:

  • 388.902045/2238=0.1738388.902045 / 2238 = 0.1738

Finally, take the square root:

  • 0.1738=0.4169\sqrt{0.1738} = 0.4169

Therefore, the standard error estimate of β^0\hat{\beta}_0 is 0.4169._

Comments

Loading comments...