LeetQuiz Logo
Privacy Policy•contact@leetquiz.com
RedditX
© 2025 LeetQuiz All rights reserved.
Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


A regression model is estimated as:

Yi=3+1.5X1i−2X2i+ϵiY_i = 3 + 1.5X_{1i} - 2X_{2i} + \epsilon_iYi​=3+1.5X1i​−2X2i​+ϵi​

What is the value of β^1\hat{\beta}_1β^​1​ if the model is reduced to Yi=α+β^1X1+ϵiY_i = \alpha + \hat{\beta}_1 X_1 + \epsilon_iYi​=α+β^​1​X1​+ϵi​ given that ρX1X2=0.7\rho_{X_1X_2} = 0.7ρX1​X2​​=0.7, σX12=25\sigma^2_{X_1} = 25σX1​2​=25 and σX22=36\sigma^2_{X_2} = 36σX2​2​=36?

Exam-Like
Community
TTanishq



Explanation:

Explanation

When we omit a variable from a regression model, the coefficient of the remaining variable is biased. The formula for the omitted variable bias is:

β^1→β1+β2δ\hat{\beta}_1 \rightarrow \beta_1 + \beta_2 \deltaβ^​1​→β1​+β2​δ

Where:

  • β1=1.5\beta_1 = 1.5β1​=1.5 (original coefficient of X1X_1X1​)
  • β2=−2\beta_2 = -2β2​=−2 (original coefficient of X2X_2X2​)
  • δ=Cov(X1,X2)Var(X1)\delta = \frac{\text{Cov}(X_1, X_2)}{\text{Var}(X_1)}δ=Var(X1​)Cov(X1​,X2​)​

Step 1: Calculate Covariance

Given:

  • ρX1X2=0.7\rho_{X_1X_2} = 0.7ρX1​X2​​=0.7
  • σX12=25⇒σX1=5\sigma^2_{X_1} = 25 \Rightarrow \sigma_{X_1} = 5σX1​2​=25⇒σX1​​=5
  • σX22=36⇒σX2=6\sigma^2_{X_2} = 36 \Rightarrow \sigma_{X_2} = 6σX2​2​=36⇒σX2​​=6

Using the correlation formula: ρX1X2=Cov(X1,X2)σX1σX2\rho_{X_1X_2} = \frac{\text{Cov}(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}}ρX1​X2​​=σX1​​σX2​​Cov(X1​,X2​)​ 0.7=Cov(X1,X2)5×60.7 = \frac{\text{Cov}(X_1, X_2)}{5 \times 6}0.7=5×6Cov(X1​,X2​)​ Cov(X1,X2)=0.7×30=21\text{Cov}(X_1, X_2) = 0.7 \times 30 = 21Cov(X1​,X2​)=0.7×30=21

Step 2: Calculate δ\deltaδ

δ=Cov(X1,X2)Var(X1)=2125=0.84\delta = \frac{\text{Cov}(X_1, X_2)}{\text{Var}(X_1)} = \frac{21}{25} = 0.84δ=Var(X1​)Cov(X1​,X2​)​=2521​=0.84

Step 3: Calculate the Biased Coefficient

β^1=β1+β2δ=1.5+(−2)×0.84=1.5−1.68=−0.18\hat{\beta}_1 = \beta_1 + \beta_2 \delta = 1.5 + (-2) \times 0.84 = 1.5 - 1.68 = -0.18β^​1​=β1​+β2​δ=1.5+(−2)×0.84=1.5−1.68=−0.18

Therefore, the value of β^1\hat{\beta}_1β^​1​ in the reduced model is -0.18.

This demonstrates the omitted variable bias: when we omit X2X_2X2​ from the model, the coefficient of X1X_1X1​ changes from its true value of 1.5 to -0.18 due to the correlation between X1X_1X1​ and X2X_2X2​._

Powered ByGPT-5

Comments

Loading comments...