Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


Assume that you have estimated two regression equations: Y^=0.5767+0.5633X1\hat{Y} = 0.5767 + 0.5633X_1 and Y^=0.6767βˆ’0.7633X2\hat{Y} = 0.6767 - 0.7633X_2 and that covariance between explanatory variables X1X_1 and X2X_2 is 0.603 (Cov(X1,X2)=0.603\text{Cov}(X_1, X_2) = 0.603) and Var(X1)=0.874\text{Var}(X_1) = 0.874 and Var(X2)=0.75\text{Var}(X_2) = 0.75. What is the estimated expression for the intercept (Ξ±^\hat{\alpha}) for Yi=Ξ±+Ξ²1X1i+Ξ²2X2i+Ο΅iY_i = \alpha + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i?

TTanishq



Explanation:

Explanation

This question requires application of the omitted variables formula in regression analysis. Given the two single-variable regression models:

  • Y^=0.5767+0.5633X1\hat{Y} = 0.5767 + 0.5633X_1 (omitting X2X_2)
  • Y^=0.6767βˆ’0.7633X2\hat{Y} = 0.6767 - 0.7633X_2 (omitting X1X_1)

And the covariance/variance information:

  • Cov(X1,X2)=0.603\text{Cov}(X_1, X_2) = 0.603
  • Var(X1)=0.874\text{Var}(X_1) = 0.874
  • Var(X2)=0.75\text{Var}(X_2) = 0.75

Step 1: Calculate the omitted variable bias coefficients

The omitted variable bias formula states that when X2X_2 is omitted from the regression:

Ξ²^1simple=Ξ²1+Ξ²2β‹…Ξ΄1\hat{\beta}_1^{simple} = \beta_1 + \beta_2 \cdot \delta_1

Where Ξ΄1=Cov(X1,X2)Var(X1)\delta_1 = \frac{\text{Cov}(X_1, X_2)}{\text{Var}(X_1)}

Similarly, when X1X_1 is omitted:

Ξ²^2simple=Ξ²2+Ξ²1β‹…Ξ΄2\hat{\beta}_2^{simple} = \beta_2 + \beta_1 \cdot \delta_2

Where Ξ΄2=Cov(X1,X2)Var(X2)\delta_2 = \frac{\text{Cov}(X_1, X_2)}{\text{Var}(X_2)}

Step 2: Calculate the delta values

Ξ΄1=0.6030.874=0.6899\delta_1 = \frac{0.603}{0.874} = 0.6899 Ξ΄2=0.6030.75=0.804\delta_2 = \frac{0.603}{0.75} = 0.804

Step 3: Set up the system of equations

From the first simple regression: 0.5633=Ξ²1+Ξ²2β‹…0.68990.5633 = \beta_1 + \beta_2 \cdot 0.6899

From the second simple regression: βˆ’0.7633=Ξ²2+Ξ²1β‹…0.804-0.7633 = \beta_2 + \beta_1 \cdot 0.804

Step 4: Solve for Ξ²1\beta_1 and Ξ²2\beta_2

Solving this system:

  • Ξ²1=2.4476\beta_1 = 2.4476
  • Ξ²2=βˆ’2.7312\beta_2 = -2.7312

Step 5: Calculate the intercept

The intercept in the multiple regression is: Ξ±^=YΛ‰βˆ’Ξ²1XΛ‰1βˆ’Ξ²2XΛ‰2\hat{\alpha} = \bar{Y} - \beta_1 \bar{X}_1 - \beta_2 \bar{X}_2

From the regression equations, we can derive that: Ξ±^=Y^iβˆ’2.4476X1i+2.7312X2i\hat{\alpha} = \hat{Y}_i - 2.4476X_{1i} + 2.7312X_{2i}

This matches option D exactly.

Key Insight: The omitted variable bias formula allows us to recover the true coefficients from simple regressions when we know the covariance structure between the explanatory variables._

Comments

Loading comments...