Financial Risk Manager Part 1

Financial Risk Manager Part 1

Get started today

Ultimate access to all questions.


The lag operator is applied to the AR times series as follows:

(1βˆ’0.2L)(1βˆ’0.6L4)Yt=et(1 - 0.2L)(1 - 0.6L^4)Y_t = e_t

What is the resulting time series?

TTanishq



Explanation:

This question requires the application of the properties of the Lag operator. Recall that:

LYt=Ytβˆ’1LY_t = Y_{t-1}

And that the lag operator has multiplicative property. So,

(1βˆ’0.2L)(1βˆ’0.6L4)Yt=(1βˆ’0.6L4βˆ’0.2L+0.12L5)Yt=Ytβˆ’0.6YtL4βˆ’0.2YtL+0.12YtL5=Ytβˆ’0.6Ytβˆ’4βˆ’0.2Ytβˆ’1+0.12Ytβˆ’5=et\begin{align*} (1 - 0.2L)(1 - 0.6L^4)Y_t &= (1 - 0.6L^4 - 0.2L + 0.12L^5)Y_t \\ &= Y_t - 0.6Y_tL^4 - 0.2Y_tL + 0.12Y_tL^5 \\ &= Y_t - 0.6Y_{t-4} - 0.2Y_{t-1} + 0.12Y_{t-5} = e_t \end{align*}

Rearranging we get:

Yt=0.2Ytβˆ’1+0.6Ytβˆ’4βˆ’0.12Ytβˆ’5+etY_t = 0.2Y_{t-1} + 0.6Y_{t-4} - 0.12Y_{t-5} + e_t

Comments

Loading comments...