##### Q-29. Following Hull, a riskless portfolio consists of long delta (d) shares + short one option. If the stock moves up, value of the riskless portfolio = $13 \times \text{delta} - \$3 $ loss on the written call option; and If the stock moves down, value of the riskless portfolio = $7 \times \text{delta}$. Setting them equal (i.e., riskless payoff): $13 \times d - \$3 = \$7 \times d$, and $6d = 3$, so $d = 0.5$. If delta (d) = 0.5, then value of portfolio today is: $\$10 \times 0.5 - f = 5 - f = \$3.5 \times e^{-1\%}$, such that $f = 5 - \$3.5 \times e^{-1\%} = \$1.53483$ Notationally, - $ u = \frac{13}{10} = 1.3 $; $ d = \frac{7}{10} = 0.7 $ - $ p = \frac{e^{r \times \Delta t} - d}{u - d} = 0.51675 $ - $ f = e^{-rT} \times (0.51675 \times \$3 + 0) = \$1.53483 $ | Financial Risk Manager Part 1 Quiz - LeetQuiz