To find E(X1∣X2=0.5), we need to compute the conditional expectation. First, we find the conditional probability density function f(x1∣x2).
Step 1: Find the marginal density of X2
fX2(x2)=∫018x1x2dx1=8x2∫01x1dx1=8x2[2x12]01=8x2⋅21=4x2
for $0 < x_2 < 1$.
Step 2: Find the conditional density f(x1∣x2)
f(x1∣x2)=fX2(x2)f(x1,x2)=4x28x1x2=2x1
for $0 < x_1 < 1and‘0` < x_2 < 1$.
Step 3: Compute the conditional expectation
E(X1∣X2=x2)=∫01x1⋅f(x1∣x2)dx1=∫01x1⋅2x1dx1=∫012x12dx1
=2[3x13]01=2⋅31=32≈0.6667
Therefore, E(X1∣X2=0.5)=32≈0.67, which corresponds to option D.